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Abstract

The temperature field generated by an oscillatory boundary layer flow in the presence of a wall with a sinusoidal

temperature distribution is analyzed. A linear perturbation method is used to find closed form analytical solutions for

the temperature field when the amplitude of the velocity oscillation is small. The analytical solutions only consider long-

time behavior when the temperature fields oscillate with the frequency of the flow. The structure of the equation that

governs the temperature correction due to convection is similar to that of diffusive waves with the solution consisting of

traveling or standing waves. The temperature distribution is also solved numerically which allows a description of the

transient and periodic temperature fields. At short times, the solution has similarities with the traveling waves, while at

long times the solution evolves toward a standing wave. As the amplitude of the solution is increased, beyond the linear

approximation, the temperature oscillation remains periodic, but more Fourier modes are incorporated. We find that in

all cases, the long-time, time averaged heat transfer from the boundary to the fluid is zero.

� 2004 Published by Elsevier Ltd.
1. Introduction

Since the mid-20th century numerous studies on axial

and transverse diffusion in oscillatory flows have been

conducted with a special emphasis on biological and

geophysical applications. Recently, the potential to use

oscillatory flows to augment the heat transfer rates in

Stirling machines, cryocoolers and in computer com-

ponents has renewed interest in the field. Progress in

understanding heat transfer in oscillatory flows with

zero mean (reciprocating flows) is incomplete since

studies carried out by different groups have been moti-

vated by specific applications and no general description

and interpretation of the phenomenon is available.
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Cooper et al. [1] and Zhao and Cheng [2] have published

review papers that include much of the progress to date

on reciprocating flows.

A general classification of the flows can be made by

considering the geometry of heating (or cooling) at the

boundaries. The first classification group includes heat

transfer studies in ducts with walls of spatially uniform

temperature. These studies are inspired by the classical

example of heat transfer in a duct with hot walls and

constant flow velocity which was solved originally by

Nusselt and See [3]. A numerical solution of the heat

transfer equations for a reciprocating laminar flow in a

pipe with entrance effects was conducted by [4]. An

interesting property of this flow with Prandtl number

order one, is that annular effects similar to those found

in the axial velocity distributions, were found for the

temperature fields. The same authors performed exper-

imental observations of this flow and reported space-

cycle averaged Nusselt numbers that coincide with the



Fig. 1. Semi-infinite fluid region limited by a rigid plate with a

sinusoidal temperature profile.
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numerical calculations [5]. A major experimental diffi-

culty in this configuration is that inlet and outlet regions

alternatively change roles and efficient heat removal

mechanisms are required if the swept length is large.

The second group of studies is characterized by the

assumption of a linear wall temperature profile. A

reciprocating flow in such a duct can substantially in-

crease the heat transferred between the ends of the duct.

Due to the potential use of this configuration in a large

number of applications, this problem has been studied in

detail [6,7]. Heat transport in a boundary layer from an

oscillating flat plate with a linear temperature gradient

can achieve a large heat flux due to the interaction of a

transverse conduction flux with the periodic longitudinal

convection [8].

The third flow group we identify consists of heat

transfer problems with nonlinear wall temperature dis-

tributions. The mechanisms of heat transfer in oscilla-

tory flows in short rectangular ducts with a pulse

function wall temperature distribution have been ex-

plored with experimental and numerical tools [9]. The

oscillatory Nusselt number was found to be propor-

tional to the length of the heated region and the third

power of the oscillatory Reynolds number. Strong

velocity and temperature fluctuations are attributed to

sudden pressure changes at the channel outlets. In this

flow it was observed that temperature and velocity

fluctuations are out of phase. Heat transfer in oscillatory

pipe flow with a sinusoidal wall temperature has been

analyzed assuming that the wavelength of the tempera-

ture profile along the wall is larger than the radius of the

pipe [10]. In this analysis, the axial velocity profile was

averaged over the radius to provide a uniform axial

velocity. With this crucial assumption, the total deriva-

tive for the temperature in the energy conservation

equation can be transformed into a partial derivative

with respect to time. The transformed energy equa-

tion was solved using Fourier series. The qualitative

behavior was described in terms of two parameters: the

ratio of the radius to the thickness of Stokes ther-

mal boundary layer (thermal Womersley number) and

the ratio of the swept length to the wavelength of the

wall temperature. The validity of the assumptions on

which the model is based has not been confirmed. In

particular, the cross-section uniformity of the velocity is

questionable since it is well known that the axial velocity

varies in the radial direction and varies with the fre-

quency.

In the present paper, we present an analysis of heat

transfer in an oscillatory flow boundary layer where a

sinusoidal temperature profile is prescribed at the wall.

This problem is an example of the third group and is

similar to that studied by Lee et al. [10], but we do not

average the velocity along the transversal direction.

Initially, we assume that the amplitude of the velocity of

oscillation is small and solve for the temperature dis-
tribution using a perturbation method. In the linear

case, we find that the temperature correction due to the

oscillatory convection obeys a diffusion wave equation

[11] whose solutions are traveling and standing waves.

The case when the amplitude of oscillation is not small is

analyzed with a numerical method. The analytical

solution to the sinusoidal problem can be useful since

under circumstances where the problem is linear, the

superposition principle can be used to analyze arbitary

wall temperature profiles.
2. Analysis

Assume that a two-dimensional oscillatory flow exists

in the semi-infinite plane above a rigid wall. The axial

coordinate x is defined parallel to the wall and the

transverse coordinate y runs perpendicular to it. A

sinusoidal temperature profile of the form T ðxÞ ¼ T þ
Tw
2
cosðx=kÞ is prescribed at the wall which is assumed to

extend in the interval �1 < x < 1. T is a reference

temperature equal to the average temperature of the

wall, Tw is the amplitude of the temperature distribution

at the wall and k is the wavelength. We will assume that

jTwj < T . This situation is schematically presented in

Fig. 1.

Assuming that no natural convection effects are

present, the velocity of the pulsating flow at a solid

boundary has only an axial component and is given by

[12]

uðy; tÞ ¼ U1 cosðxtÞ
�

� exp

�
� x

2m

� �1=2
y
�

� cos xt
�

� x
2m

� �1=2
y
��

ð1Þ
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where U1 is the amplitude of the free stream velocity far

away from the plate, x is the oscillation frequency and m
is the kinematic viscosity of the fluid.

Neglecting viscous heating and considering an

incompressible fluid, the heat transfer equation for a

two-dimensional flow is

oT
ot

þ u
oT
ox

þ t
oT
oy

¼ j
o2T
ox2

�
þ o2T

oy2

�

where j ¼ k=qCp is the thermal diffusivity of the fluid.

Since the motion takes place only in the axial direc-

tion, the equation that describes the temperature field is

oT
ot

þ uðy; tÞ oT
ox

¼ j
o2T
ox2

�
þ o2T

oy2

�
ð2Þ

where uðy; tÞ given by Eq. (1).

The boundary conditions are

T ðx; 0; tÞ ¼ T þ Tw
2

cos
x
k

� �
T ðx; y ! 1; tÞ ¼ T

We have assumed that the temperature of the free

stream is equal to the average wall temperature. The

boundary conditions in the x direction can be considered

cyclic with a periodicity and phase dictated by the

boundary conditions at the wall. We will now cast the

equation into non-dimensional form using the symbol *

to denote dimensionless quantities. The non-dimen-

sional axial variable is defined by the wavelength of the

wall temperature, x
 ¼ x=k. The natural scale for the

transverse direction in an oscillatory boundary layer is

the Stokes penetration depth, defined by d ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
.

The problem contains two time scales; the forcing time

scale 1=x, and the diffusive time scale, k2=m. Since the

main objective of the present study is the effect of the

forced convection, we will scale time with the frequency

of oscillation i.e. t
 ¼ tx. With this scaling, the limit

x ! 0 is excluded from the analysis. Of course, this does

not imply a singularity; the x ! 0 limit can be easily

analyzed by the using diffusive time scale. The scaled

velocity and temperature are u
 ¼ u=U1 and T 
 ¼
ðT � T Þ=Tw respectively.

Dropping the asterisks, the non-dimensional equa-

tion that governs the temperature distribution is

oT
ot

þ �u
oT
ox

¼ 1

PrRx

o2T
ox2

þ 1

2Pr
o2T
oy2

ð3Þ

where u is the non-dimensional version of Eq. (1). The

relevant non-dimensional parameters are the Prandtl

and oscillatory Reynolds numbers defined by

Pr ¼ m
j

ð4Þ
Rx ¼ xk2

m
ð5Þ

and the parameter � that reflects the importance of the

convective effects:

� ¼ Re
Rx

¼ U1

xk
ð6Þ

The Reynolds number ðReÞ is defined by Re ¼ U1k=m
and does not appear as an independent parameter in the

formulation. Note that an alternative interpretation of �
is � ¼ 1=St, where the Strouhal number (St) is the ratio

of inertial to forcing characteristic times. The non-

dimensional boundary conditions are

T ðx; 0; tÞ ¼ 1
2
expðixÞ

T ðx; y ! 1; tÞ ¼ 0

T ð0; y; tÞ ¼ T ð2np; y; tÞ

where n ¼ 1; 2; 3 . . .
3. Solution for � � 1

The complete solution to Eq. (3) is difficult to obtain

in analytic form, but an approximate solution can be

calculated when the oscillatory flow is small.

We shall assume that the temperature field has the

following form:

T ¼ T0ðx; yÞ þ �T1ðx; y; tÞ ð7Þ

and analyze only the case where � � 1.

Substituting Eq (7) in Eq (3), we get

�
oT1
ot

þ �u
oT0
ox

þ �2u
oT1
ox

¼ 1

PrRx

o2T0
ox2

þ 1

2Pr
o2T0
oy2

þ �

PrRx

o2T1
ox2

þ �

2Pr
o2T1
oy2

ð8Þ

The zero-order temperature distribution contains the

terms where the parameter � is absent

o2T0
ox2

þ Rx

2

o2T0
oy2

¼ 0 ð9Þ

with boundary conditions:

T0ðx; 0Þ ¼ 1
2
expðixÞ

T0ðx; y ! 1Þ ¼ 0

T0ð0; yÞ ¼ T0ð2np; yÞ

This expression represents the steady component of the

temperature distribution and describes heat diffusion

into a stagnant fluid. The order one correction to the

stagnant temperature distribution is obtained by

grouping the terms that contain the parameter � to the

first power:
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Fig. 2. Upper panel: Isotherms for t ¼ 0. Lower panel: Tem-

perature as a function of the transverse coordinate y for selected
axial positions and t ¼ 0. (a) x ¼ 0, (b) x ¼ p=4, (c) x ¼ p=2, (d)
x ¼ 3p=4, (e) x ¼ p, (f) x ¼ 5p=4, (g) x ¼ 6p=4, (h) x ¼ 7p=4.
Rx ¼ 50, Pr ¼ 0:1, � � 1.
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Fig. 3. Upper panel: Isotherms for t ¼ 0. Lower panel: Tem-

perature as a function of the transverse coordinate y for selected
axial positions and t ¼ 0. (a) x ¼ 0, (b) x ¼ p=4, (c) x ¼ p=2, (d)
x ¼ 3p=4, (e) x ¼ p, (f) x ¼ 5p=4, (g) x ¼ 6p=4, (h) x ¼ 7p=4.
Rx ¼ 50, Pr ¼ 1, � � 1.
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oT1
ot

þ u
oT0
ox

¼ 1

PrRx

o2T1
ox2

þ 1

2Pr
o2T1
oy2

: ð10Þ

The boundary conditions are

T1ðx; 0; tÞ ¼ 0

T1ðx; y ! 1; tÞ ¼ 0

T1ð0; y; tÞ ¼ T1ð2np; y; tÞ

The solution to the zero order (Eq. (9)) with corre-

sponding boundary conditions is

T0ðx; yÞ ¼ 1
2
expð�ay � ixÞ ð11Þ

Here a ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=Rx

p
¼ d=k is the ratio of the Stokes pene-

tration depth to the wavelength of the temperature dis-

tribution at the wall. Since the boundary condition for

y ¼ 0 is an even function of the axial coordinate, the

solution can be formally written with a ± sign. Although

it is a trivial observation at this point, it will be impor-

tant in the discussion of the first-order solution.

The solution to Eq. (10) with initial and boundary

conditions is composed by a transient term which is

influenced by the initial conditions, and a steady-peri-

odic term which is dominant at long enough times for

the system to become periodic. The solution at long

times is

T1ðx; y; tÞ ¼ Af ðyÞ expðiðt þ xÞÞ þ Bf ðyÞ expðiðt � xÞÞ
ð12Þ

the constants A, B are 0, ±1, but not simultaneously zero

and f ðyÞ is

f ðyÞ ¼ expð�cyÞ � expð�ayÞ
2

þ iPr
expð�cyÞ � expð�ða þ cÞyÞ

2ða þ ið1� Pr þ aÞÞ

� �
ð13Þ

where c ¼ 1þ i and c ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iRxPr

p
.

From Eq. (12), it is seen that there are two linearly

independent solutions corresponding to left and right

traveling waves respectively. The specific choice of one

of them is determined by the boundary conditions at

fixed x. Here we are considering cyclic boundary con-

ditions in the axial direction and therefore traveling

waves in either direction are solutions. Also the partic-

ular case of a standing wave, A ¼ B is a solution for the

present boundary conditions. In the discussion of this

section, we will consider in all cases A ¼ 1, B ¼ 0.

Solutions for A ¼ 0, B ¼ 1, are obtained by the trans-

formation x ! �x and T1 ! �T1.
Figs. 2–5 give graphical information on the T1 tem-

perature field defined in Eqs. (12) and (13). In all cases,

T1 is a damped oscillatory function of the transverse

coordinate.

Fig. 2 shows isotherms for Rx ¼ 50 and Pr ¼ 0:1. The
positive and negative temperature zones occupy equal
areas in the xy space, but the separatrixes between re-

gions are inclined lines for the phase angle of the cycle

considered (t ¼ 0). As commented before, the symmetric

temperature distribution with separatrixes inclined at

opposite angles corresponding traveling waves moving

to the right is obtained taking A ¼ 0, B ¼ 1. The dis-

tance from the wall at which T1 reaches the first maxi-

mum is approximately y ¼ 3. Given the scaling, the

dynamic boundary layer or Stokes penetration depth is

y ¼ 1. Therefore, the thermal boundary layer extends

further inward than the dynamic boundary layer, which
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Fig. 4. Upper panel: Isotherms for t ¼ 0. Lower panel: Tem-

perature as a function of the transverse coordinate y for selected
axial positions and t ¼ 0. (a) x ¼ 0, (b) x ¼ p=4, (c) x ¼ p=2, (d)
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is to be expected since Pr < 1. The corresponding

information for Rx ¼ 50 and Pr ¼ 1:0 is shown in Fig. 3.

The relative size of the dynamic and thermal boundary

layer is about the same as in the previous case, but the
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Fig. 5. Snapshots of temperature distribution, T1, Rx ¼
temperature fluctuations are larger. Also, in this case,

the maximum temperature is found at a larger x (x � p).
Temperature field for Rx ¼ 5 and Pr ¼ 0:1 are shown in

Fig. 4. As expected, the temperature distribution is less

influenced by the oscillation of the fluid. Also, note that

the temperature fluctuations are about 2% of the cor-

responding value obtained in the case Rx ¼ 10 and are

reached nearer to the wall (y ¼ 0:4).
When A ¼ B in Eq. (12), we get an standing wave as

illustrated in Fig. 5 for Rx ¼ 50, Pr ¼ 1. The lines sep-

arating the hot and cold regions are vertical lines cen-

tered at the positions where the boundary condition is

zero. In the interval 0 < t < 1:80, the temporal distri-

bution evolves in a diffusive manner, and at t � 2:65, the
cold and hot regions switch places in a relative short

time and then the cycle starts again.

Referring back to Eq. (8), the only term that has been

neglected is uoT1=ox. The magnitude of this term can be

checked to estimate the error and indicate when the

linearization approximation breaks down.
4. Numerical solution for arbitrary �

In the previous section we studied the case when the

oscillatory velocity was small (� � 1), and the resultant
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50, Pr ¼ 1, � � 1 for half a cycle of the forcing.
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temperature field was only a slight departure from the

diffusive solution. In this section, we relax these condi-

tions and numerically solve Eq. (3) for unrestricted �.
The geometry and boundary conditions are the same as

those considered in Section 1.

The numerical solution is sought by a spectral

expansion of the temperature field according to

T ðx; y; tÞ ¼
XNx

n

XNy

m

An;mðtÞRmðyÞeinx ð14Þ

where Nx and Ny are the number of modes in the finite

expansion and RmðyÞ are rational Chebyshev poly-

nomials [13]. Rational Chebyshev polynomials are

useful for employing spectral methods in semi-infinite

domains. The polynomials are simply a transformation

of standard Chebyshev polynomials and the algorithms

for using these polynomials are identical to spectral

methods based on Chebyshev polynomials. Rational

Chebyshev polynomials are related to regular Cheby-

shev polynomials by the relation,

RmðyÞ ¼ TnðŷÞ ð15Þ

where

y ¼ Lð1þ ŷÞ=ð1� ŷÞ; ð16Þ

and L is the boundary layer thickness map parameter;

we use L ¼ 5 in our simulations but the results are not

sensitive to the value. The rational Chebyshev trans-

formation simply stretches the grid points from the

usual �1 < y < 1 domain to 0 < y < 1 while clustering

most of the grid points between 0 < y < L.
After applying the expansion, the governing equation

becomes a set of ordinary differential equations for the

expansion coefficients, Am;n. The equations are integrated

forward in time using a fractional step method. The

convective term is integrated using an Adams–Bashforth

method while the diffusive term is integrated with a

simple implicit backward-Euler approximation to ensure

numerical stability. The convective term was computed

using the usual pseudo-spectral approximation: deriva-

tives are computed in function space, the results are

transformed to physical space, the product is taken in

physical space, and the final result is transformed back

to function space [14].

The boundary conditions are imposed by enforcing

the temperature at the plate and at the last grid point in

the y direction, which is typically y ¼ 104 (but depends

on how many points are used in the expansion). The

choice of expanding the x direction with a Fourier series

automatically satisfies the periodicity boundary condi-

tion in this direction. The initial condition for the sim-

ulation was the total temperature set to zero everywhere

in the domain. The numerical method was validated by

employing standard convergence tests as well as com-

paring the exact analytical diffusive solutions to the
simulations. The method was found to be both efficient

and accurate, complete results can be obtained in only a

few seconds on a standard PC, Nx ¼ Ny ¼ 32 provided

an adequate resolution.
4.1. Transient behavior

We compared the numerical to the analytical solu-

tions for small � to validate the methods and analyze the

transient behavior. The temperature field goes through a

brief transient then reaches a steady state with periodic

dynamics. When viewing the solution as the departure

from the diffusive solution we find that the standing

wave solution (i.e. A ¼ B) is the long term solution.

Using an � ¼ 0:1 we found that the numerical and

analytical expressions matched well within 1% after the

transient has decayed.

Typical transient behavior is shown in the following

sequence of figures. In Fig. 6 we show the temperature

contours in the x–y plane at four instances in time for the

case of Re ¼ 50, Pr ¼ 1, � ¼ 0:1. These snapshots are

taken when the flow is still undergoing the transient.

Corresponding to these snapshots is Fig. 7, where we

show the temperature at a single location as a function

of time. In this figure we clearly see the transient and

transition to periodic dynamics. The ‘‘stars’’ in Fig. 7

represent the times for the four snapshot frames in

Fig. 6.

An alternate view of the transient phenomena is

shown in Fig. 8. In this figure we plot the image of T1
along a single vertical location (y ¼ 2) at each instant in

time. This plot has the same parameters as Figs. 7 and 6.

In this figure we can clearly see the development of the

periodic standing wave at late times. The standing wave

is found to center at the locations where temperature

boundary condition, cosðxÞ, is equal to zero. The period

of the oscillation is driven by the oscillatory flow and

taking a power spectrum in time shows that the only

significant frequency component of the flow is at

x ¼ 2p. The final flow that develops is found to perfectly

agree with the analytical standing wave solution pro-

vided in the previous section.
4.2. Solution at long times

The general development of the temperature field is

similar as the flow velocity is increased. The temperature

goes through a transient and evolves to a state of peri-

odic dynamics. As the magnitude of the oscillatory flow

is increased, the dynamics become more complex and

more frequency and wavenumber components become

involved in the final solution. In Fig. 9 we show the data

in the same method as in Fig. 8, only we have increased

the flow velocity to � ¼ 1:0. In this case we see that the

temperature dynamics become somewhat more complex,



Fig. 6. The temperature field contours (the diffusive solution has been subtracted) at four instances in time. The four snapshots

correspond to the ’*’ points in Fig. 7. The solution is still in the transient stage and is on the way evolving to a pure standing wave.
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Fig. 7. The temperature at a single point, x ¼ p=2 and y ¼ 2, as

a function of time. The figure shows a transient followed at long

times by periodic dynamics.

Fig. 8. Temperature, T1, at y ¼ 2 as a function of time for

� ¼ 0:1. The magnitude of the temperature is imaged such that

red is greater than the diffusive solution (hot) and blue is less

than the diffusive solution (cold). The image shows the transient

development and the evolution to the standing wave solution

centered at the zeros of the boundary condition. (For inter-

pretation of the references in color in this figure legend, the

reader is referred to the web version of this article.)
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though there is still only the presence of the standing

wave with the temporal frequency of the flow oscillation.

As the flow velocity is further increased more tem-

poral and spatial frequencies become present in the

solution. Another method to visualize the temporal

dynamics is to plot the temperature at two different

physical locations in the domain at each instant in time.

We select points at x ¼ p=2 and y ¼ 0:15, y ¼ 2:0 and
plot the values of T1 at each instant in time. The result

for different flow velocities is shown in Fig. 10. We see

more and more complex dynamics as the flow rate is

increased. At the lowest flow rates we see that only one



Fig. 9. Temperature, T1, at y ¼ 2 as a function of time for

� ¼ 1:0. The magnitude of the temperature is imaged such that

red is greater than the diffusive solution (hot) and blue is less

than the diffusive solution (cold). The image shows the rapid

transient development and the evolution to the standing wave

solution. (For interpretation of the references in color in this

figure legend, the reader is referred to the web version of this

article.)
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Fig. 10. Temperature at two locations, (x ¼ p=2; y ¼ 0:15) and

(x ¼ p=2; y ¼ 2), at each instant in time. The flow velocity is

increased throughout the four plots. At the lowest velocities,

� ¼ 1, we see only one frequency is dominant since the values

trace out an ellipse. As the velocity increases there are clearly

more frequencies present in the dynamics.

Fig. 11. Total temperature, T0 þ T1, at y ¼ 2 as a function of

time for � ¼ 4:0 The image shows the rapid transient develop-

ment and the evolution to the oscillation from the flow forcing.
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Fig. 12. Fourier power spectrum of the temperature history at

x ¼ p=2, y ¼ 2 for different values of � ¼ 0:1, 1, 2, 4 and 8. The

power is arbitrary and each curve is shifted upward in order to

visualize the features are different �. A salient feature of the plot

is that only harmonics of the forcing are present.
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temporal frequency is present, just as with the � � 1

analytical solution the plot traces an ellipse. At the

highest flow rate shown the dynamics become quite

complex and more temporal frequencies are evident.

While the dynamics at the highest velocities have

many spatial and temporal frequencies present the

solutions seem quite logical when we view the develop-
ment of the complete temperature field (T0 þ T1) rather
than as the departure from the diffusive solution. Using

the same method of visualization as in Figs. 8 and 9, we

plot the total temperature field for � ¼ 4 in Fig. 11. In

this figure we clearly see convection of the temperature

field as a forced flow oscillates. The increase in the

number of frequencies present in the solution is further

illustrated in Fig. 12 where the time-Fourier spectrum of

the temperature is shown for x ¼ p=2, y ¼ 2 and � ¼ 0:1,
1, 2, 4 and 8. A salient feature of the plot is that only

harmonics of the forcing are present. As commented

before, for the smallest �, the only relevant frequency

corresponds to the forcing. As � is increased, more
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harmonics become important and for � ¼ 4, the domi-

nant frequency is not the forcing but its third harmonic.

Further increase in � results in several dominant har-

monics.
5. Heat transfer

The instantaneous and local heat transfer is

q ¼ �k oT
oy jy¼0 and can be easily calculated from the

analysis presented above. We present the heat transfer

results using the standard definition of the Nusselt

number; Nu ¼ qd=kTw. In the present context the useful

definition is the Nusselt number averaged over half the

axial wave length and one temporal cycle i.e.

hNui ¼
Z p

0

Z p=2

�p=2

 "
� d

kTw

oT1
oy






y¼0

!
dx

#
dt ð17Þ

For the � � 1 case, it is easy to see that since

T1 ¼ f ðyÞ expðiðxþ tÞÞ, then hNui ¼ 0. The modification

of the heat transferred to or from the wall brought by

the correction T1 in the first half a cycle is compensated

by an identical amount with the opposite sign in the

second half of the cycle. In the general case, for arbitrary

values of �, the heat transfer is also zero. This is to be

expected since the boundary condition is periodic in x
and the forcing is periodic in time and independent of x.

The time-dependent, space-averaged Nusselt number

defined as the expression in the square brackets in Eq.

(17), displays an interesting behavior. Upon using Eqs.

(12) and (13) with A ¼ 1, B ¼ 0, we get

hNui ¼
Z p=2

�p=2

 
� d
kTw

oT1
oy






y¼0

!
dx

¼ � 2d
kTw

ð � I1 cos t þ I2 sin tÞ; ð18Þ

where

I1 ¼
a � cR

2
þ Pr

2

�a þ cIa þ ða þ 1� cRÞð1� Pr þ aÞ
a2 þ ð1� Pr þ aÞ2

 !

and

I2 ¼
cI
2
� Pr

2

ða þ 1� cRÞa þ ð1� cIÞð1� Pr þ aÞ
a2 þ ð1� Pr þ aÞ2

 !
:

Here, the real and imaginary parts of c are

cR þ icI ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

xPr
24

q
ðcos h þ i sinhÞ:

and h ¼ RxPr.
Eq. (18) indicates that the relative phase between

hNui and the velocity oscillation depends on Rx and Pr.
For instance, when Pr is very large and Rx is moderate,

I1 ¼ I2 ¼ �
ffiffiffiffiffi
Pr

p
=2 and the relative phase is p=4. In

contrast, for Pr ! 0, as is approximately the case for

liquid metals, hNui vanishes.
6. Concluding remarks

The problem of two competing–complementing heat

transfer mechanisms of conduction in the transverse

direction and forced convection in the axial direction has

been analyzed. The specific problem analyzed is the heat

transfer of an oscillatory flow in contact with a wall with

a sinusoidal temperature distribution. Considering only

the case where the ratio of the axial velocity to the

product of the oscillation frequency times the wave

length of the wall temperature distribution is small, an

analytical solution has been obtained. It was found that

for Pr ¼ 1, the convective effect has maximum influence

at a distance of one Stokes penetration depth. The

equivalent problem with arbitrary free stream velocity

was solved with a numerical method. The numerical

integration revealed that the temperature distribution in

the transient state is similar to a traveling wave, while

the long term solution is a standing wave. The heat

transfer from the boundary to the fluid is always zero.

The results of this paper have assumed that the base flow

is stable [15], that natural convection effects are negli-

gible, and that the flow is two-dimensional. These

assumptions should always be checked before applying

the analysis presented here. Natural convection in two

dimensions has been incorporated into many heat

transfer studies (see for instance [16]) and its inclusion in

the oscillatory boundary layer flow is a topic of future

work. Furthermore, three-dimensional effects can have a

large influence on heat transfer rates [17] but a corre-

sponding analysis incorporating oscillatory flows would

require more sophisticated numerical and analytical

models than those presented here.
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